Film drainage between two surfactant-coated drops colliding at constant approach velocity.

نویسندگان

  • Leslie Y Yeo
  • Omar K Matar
  • E Susana Perez de Ortiz
  • Geoffrey F Hewitt
چکیده

The drainage of the intervening continuous phase film between two drops approaching each other at constant velocity under the influence of insoluble surfactant is investigated. The mathematical model to be solved is a coupled pair of fourth-order nonlinear partial differential equations which arise from the relationships governing the evolution of the film thickness and the surfactant interfacial concentration in the lubrication approximation. We adopt a simplified approach which uses lubrication theory to describe the flow within the drop, marking a departure from the conventional framework in which Stokes flow is assumed. When the model is solved numerically together with the relevant initial and boundary conditions, the results obtained are compared with those found in the literature using the "boundary integral" method to solve for the flow in the drop phase. The close agreement between the results inspires confidence in the predictions of the simplified approach adopted. The analysis on the effect of insoluble surfactant indicates that its presence retards the drainage of the film: The fully immobile interface limit is recovered even in the presence of a small amount of surfactant above a critical concentration; film rupture is either prolonged or prevented. The retardation of the film was attributed to gradients of interfacial tension which gave rise to the Marangoni effect. A study of the influence of various system parameters on the drainage dynamics was conducted and three regimes of drainage and possible rupture were identified depending on the relative magnitudes of the drop approach velocity and the van der Waals interaction force: Nose rupture, rim rupture, and film immobilization and flattening. Finally, the possibility of forming secondary droplets by encapsulating the continuous phase film into the coalesced drop at rupture was examined and quantified in light of these regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Drainage and Rupture of the Film between Colliding Drops in the Presence of Surfactant

The understanding of the coalescence process between two drops is essential in determining the stability of liquid-liquid systems. By solving the equation governing the evolution of the continuous phase film trapped between two drops colliding at constant velocity coupled with that describing the surfactant interfacial concentration in the lubrication approximation, we show that the interface i...

متن کامل

Effect of Insoluble Surfactants on Drainage and Rupture of a Film between Drops Interacting under a Constant Force.

The deformation, drainage, and rupture of an axisymmetrical film between colliding drops in the presence of insoluble surfactants under the influence of van der Waals forces is studied numerically at small capillary and Reynolds numbers and small surfactant concentrations. Constant-force collisions of Newtonian drops in another Newtonian fluid are considered. The mathematical model is based on ...

متن کامل

Numerical simulation of drop coalescence in the presence of film soluble surfactant

Numerical method is presented for simulation of the deformation, drainage and rupture of axisymmetrical film (gap) between colliding drops in the presence of film soluble surfactants under the influence of van der Waals forces at small capillary and Reynolds numbers and small surfactant concentrations. The mathematical model is based on the lubrication equations in the gap between drops and the...

متن کامل

The Dynamics of Marangoni-Driven Local Film Drainage between Two Drops.

A study of Marangoni-driven local continuous film drainage between two drops induced by an initially nonuniform interfacial distribution of insoluble surfactant is reported. Using the lubrication approximation, a coupled system of fourth-order nonlinear partial differential equations was derived to describe the spatio-temporal evolution of the continuous film thickness and surfactant interfacia...

متن کامل

Surfactant effects on thermocapillary interactions of deformable drops.

A three-dimensional boundary-integral algorithm is used to study thermocapillary interactions of two deformable drops in the presence of bulk-insoluble, non-ionic surfactant. The primary effect of deformation is to slow down the rate of film drainage between drops in close approach and prevent coalescence in the absence of van der Waals forces. Both linear and non-linear models are used to desc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 257 1  شماره 

صفحات  -

تاریخ انتشار 2003